Search

Dr Ivan Haigh

Lecturer in Coastal Oceanography

Tag

Australia

New paper just published in Coral Reefs – Influence of the Great Barrier Reef on wave attenuation

We have just had a new paper (The large-scale influence of the Great Barrier Reef matrix on wave attenuation) published in the journal Coral Reefs. Click here to see a copy. This was our press release:

New research has found that the Great Barrier Reef, as a whole, is a remarkably effective wave absorber, despite large gaps between the reefs. This means that landward of the reefs, waves are mostly related to local winds rather than offshore wave conditions. 

As waves break and reduce in height over reefs, this drives currents that are very important for the transport of nutrients and larvae. This reduction in wave height also has implications for shoreline stability. Transition 

The Great Barrier Reef in Australia is the largest coral reef system in the world, extending 2,300 km alongshore. The reef matrix is a porous structure consisting of thousands of individual reefs, with gaps in between. The porosity varies in that is it much lower in the north where the continental shelf is narrow and there is extensive reef flats; and is greater in the south where the shelf reaches up to 300 km wide and there are extensive lagoons. 

Previously, there have been several studies investigating how individual reefs in the Great Barrier Reef influence ocean waves. However, this was the first, comprehensive, large-scale study of the influence of an entire offshore reef system on ocean wave transmission. The researchers used a 16-year record of satellite altimeter measurements of wave heights. 

The team was led by Dr Shari Gallop, Research Fellow in Geology and Geophysics at the University of Southampton, and included Dr Ivan Haigh, also from the University of Southampton; Professor Ian Young, Vice-Chancellor of the Australian National University (ANU); Professor Roshanka Ranasinghe, Professor of Climate Change Impacts and Coastal Risk (UNESCO-IHE, Deltares, ANU), and Dr Tom Durrant (Bureau of Meteorology, Australia). 

The aim was to see how wave height reduction is influenced by the porosity of the reef matrix, sea level and wind speed. Dr Gallop says: “There was no evidence that in less porous areas wave heights are lessened. This is because individual reefs, like islands, cast a ‘wave shadow’ over a large area, so that a matrix of individual reefs is remarkably efficient at reducing waves.” 

Dr Haigh adds: “As sea level varies, due to tides and storm surges, the submergence of the reef in water also varies. Wave heights are not strongly affected by water level over the reef matrix.” 

Professor Young says: “A number of previous studies have investigated the attenuation (height reduction) of ocean waves as they spread across individual coral reefs. This research is unique as it looks at the impact of a large scale reef matrix, such as the Great Barrier Reef, on wave height. Such studies are important in providing wave climate information for physical, biological and planning processes in such areas.” 

This new research, published in Coral Reefs, has important implications for wave modelling near reef systems. This is because models that consider individual reefs only may underestimate the wave reduction potential of a full reef matrix. 

Professor Ranasinghe comments: “Plans are under-way to investigate the wave attenuation characteristics over the reef in more detail, using sophisticated numerical modelling. It is of critical importance to know the potential impacts of climate change effects, such as sea level rise and variations in wave conditions, on wave attenuation and current circulation on the Great Barrier Reef. This will aid in the sustainable management of this natural wonder and the surrounding marine national park.”

 

 

 

 

New paper, just published: Australian Sea Levels – Trends, Regional Variability and Influencing Factors

While there has been significant progress in describing and understanding global-mean sea-level rise, the regional departures from this global-mean rise are more poorly described and understood. In this new paper, which you can view here, we present a comprehensive analysis of Australian sea-level data from the 1880s to the present, including an assessment of satellite-altimeter data since 1993.

We find that After the influence of El Niño Southern Oscillation is removed and allowing for the impact of Glacial Isostatic Adjustment and atmospheric pressure effects, Australian mean sea-level trends are close to global-mean trends from 1966 to 2010, including an increase in the rate of rise in the early 1990s. Given that past changes in Australian sea level are similar to global-mean changes over the last 45 years, it is likely that future changes over the 21st century will be consistent with global changes.

 

Blog at WordPress.com.

Up ↑

NBA.com | Hang Time Blog

The official news blog of NBA.com with commentary and analysis from NBA.com's staff of writers.

Geo/Socio/Politico

* the more you know

Hypergeometric

``I am only one, but still I am one. I cannot do everything, but still I can do something; And because I cannot do everything, I will not refuse to do the something that I can do.'' -- Edward Everett Hale

Ricky's photography

Just another WordPress.com site

Southampton MsC ECE

MSC Engineering in the Coastal Environment, University of Southampton

Ryan Lowe

Coastal Dynamics, The University of Western Australia

iGlass

Using interglacials to assess future sea-level scenarios

CLIMATE AND GEOHAZARDS

Raising awareness of current research and developments in the fields of climate science and natural hazards and translating these into real benefits for people and organisations.

TED Blog

The TED Blog shares interesting news about TED, TED Talks video, the TED Prize and more.

Rescuing Historical UK Sea Level Data

Scanning and digitising unique and valuable analogue sea level records from the British Oceanographic Data Centre's archive for the benefit of the wider community

Open Mind

Science, Politics, Life, the Universe, and Everything

WordPress.com

WordPress.com is the best place for your personal blog or business site.