Search

Dr Ivan Haigh

Lecturer in Coastal Oceanography

Month

October 2014

Fieldwork at the Steart managed realignment scheme, Somerset, September 2014

My new PhD student Clementine Chirol has recently been undertaking field work at the Steart peninsula Managed Realignment Scheme.

Steart

The Steart peninsula is the largest managed realignment scheme undertaken in the UK, with 400 hectares of new habitats created to compensate for the losses related to coastal squeeze. To that end, flood defences are moved further inland and previously reclaimed farmlands are opened up to tidal inundation. As saltmarshes naturally attenuate wave and tide energy, the new flood defences will be more durable.

The project was designed and modelled by CH2M Hill on behalf of the Environment Agency; the construction phase was carried out by Team Van Oord. The completed site is now managed by the Wildfowl and Wetlands Trust (Tim McGrath).

The flood defences were breached on 1st September 2014 by Team Van Oord. With the increasing spring tide, the site’s channel was first flooded to full bank on the 7th. The highest spring tide was reached on 10th September (Hinkley Point: 7.05 m).

steart peninsula breach

The aim of Clementine’s PhD is to monitor the morphological evolution of the entry channel and creek network over several years as the site transitions to a more natural shape. Results from this project should help improve the design of future realignment schemes.

This early fieldwork campaign undertaken around the time of the first inundation focused on the creek system: in fact, due to the rapid erosion and turbulent flow, no deployment could be made in the breach area. We had two objectives: firstly, to perform a baseline survey of one of the creeks’ morphology and sedimentology that would help quantify all future changes. Secondly, to observe the early effects of the tide on the morphology and sediment strength at the Steart managed realignment site.

TGPS survey o this end a GPS survey of one of the creeks’ outline was realised, as well as several cross-sections along the length of the creek. Stakes in the ground were used to evaluate the accumulation or erosion of sediment at the banks. Sediment samples and syringe cores were taken to assess the bulk density and the organic matter concentration. The cohesive strength of the sediment was measured every day along the creek with a CSM (Cohesive Strength Meter) during the time of the fieldwork. The successive inundations of the site were monitored by two Gopro cameras covering the studied creek and the entry channel.

This fieldwork was a great opportunity to witness the realisation of an ambitious realignment project. It will also provide a valuable baseline to monitor the evolution of this area.

New paper just published – Variability in coastal flood risk

We have just had a new paper (Assessing the variability in extreme high water levels for coastal flood risk assessment) published in the Journal of Geophysical Research-Oceans – see here.

The probability of extreme storm-tide events has been extensively studied, however the variability within the duration of such events, and implications to flood risk, is less well understood. This research quantifies such variability during extreme storm-tide events (the combined elevation of the tide, surge, and their interactions) at 44 national tide gauges around the UK. Extreme storm-tide events were sampled from water level measurements taken every 15 minutes between 1993 and 2012. At each site, the variability in elevation at each time step, relative to a given event peak, was quantified. The magnitude of this time-series variability was influenced both by gauge location (and hence the tidal, and non-tidal residual characteristics) and the time relative to high water. The potential influence of this variability on coastal inundation was assessed across all UK gauge sites, followed by a detailed case study of Portsmouth. A two-dimensional hydrodynamic model of the Portsmouth region was used to demonstrate that given a current 1 in 200 year storm-tide event, the predicted number of buildings inundated differed by more than 30% when contrasting simulations forced with the upper and lower bounds of the observed time-series variability. The results indicate that variability in the time-series of the storm-tide event can have considerable influence upon overflow volumes, hence with implications for coastal flood risk assessments. Therefore, further evaluating and representing this uncertainty in future flood risk assessments is vital, while the envelopes of variability defined in this research provides a valuable tool for coastal flood modellers.

 

MATLAB Handle Graphics

 

Blog at WordPress.com.

Up ↑

Coastal Scoop

A platform for ramblings about all things coastal; the scientific and the not-so-scientific.

NBA.com | Hang Time Blog

The official news blog of NBA.com with commentary and analysis from NBA.com's staff of writers.

Geo/Socio/Politico

* the more you know

Hypergeometric

``I am only one, but still I am one. I cannot do everything, but still I can do something; And because I cannot do everything, I will not refuse to do the something that I can do.'' -- Edward Everett Hale

Ricky's photography

Just another WordPress.com site

Southampton MsC ECE

MSC Engineering in the Coastal Environment, University of Southampton

Ryan Lowe

Coastal Dynamics, The University of Western Australia

iGlass

Using interglacials to assess future sea-level scenarios

CLIMATE AND GEOHAZARDS

Raising awareness of current research and developments in the fields of climate science and natural hazards and translating these into real benefits for people and organisations.

TED Blog

The TED Blog shares interesting news about TED, TED Talks video, the TED Prize and more.

Rescuing Historical UK Sea Level Data

Scanning and digitising unique and valuable analogue sea level records from the British Oceanographic Data Centre's archive for the benefit of the wider community

Open Mind

Science, Politics, Life, the Universe, and Everything

WordPress.com

WordPress.com is the best place for your personal blog or business site.